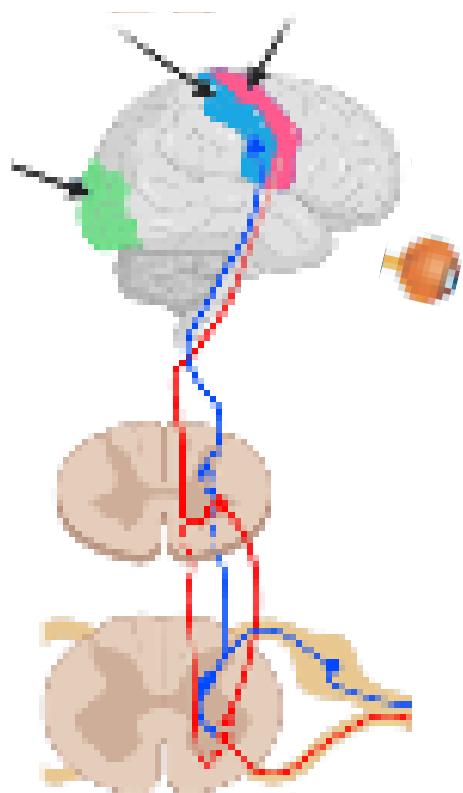
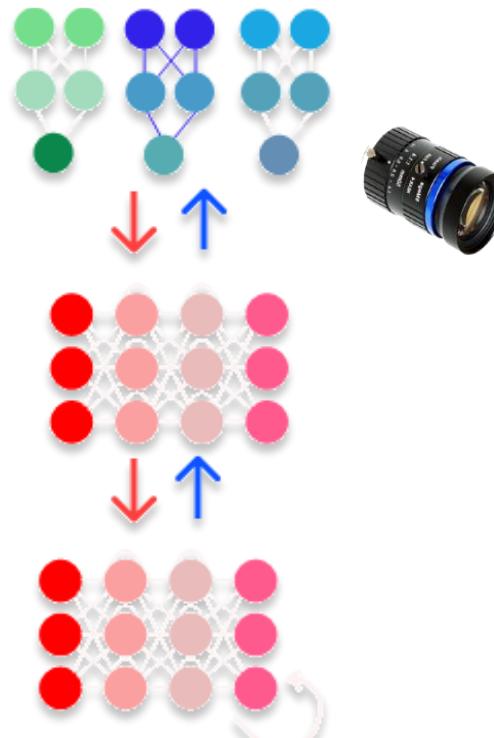
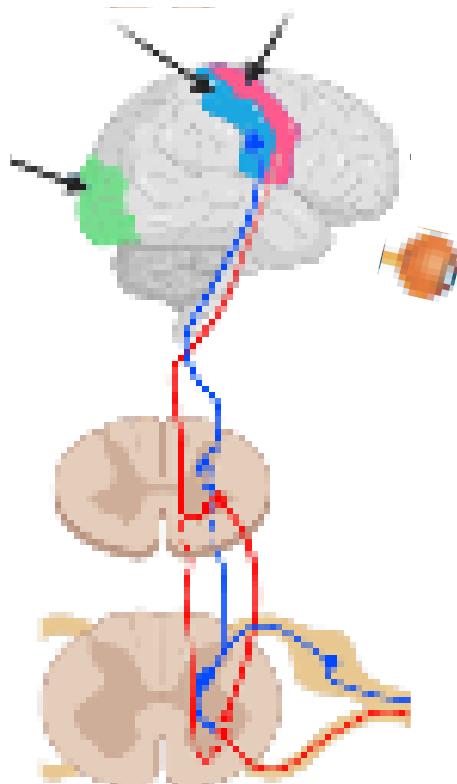


NX-414: Brain-like computation and intelligence

Martin Schrimpf



Normative frameworks

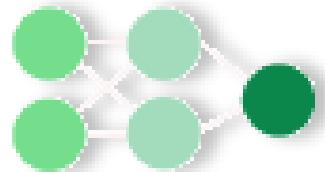


Information theoretic

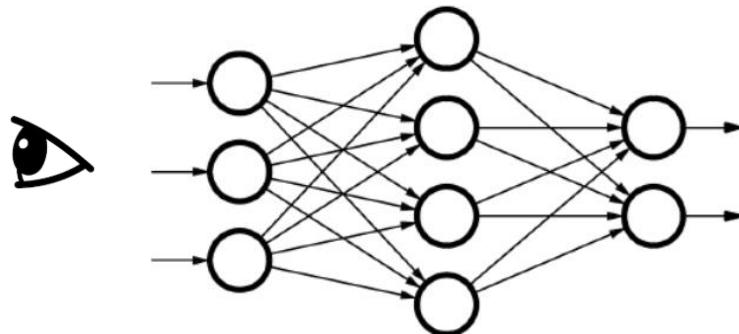
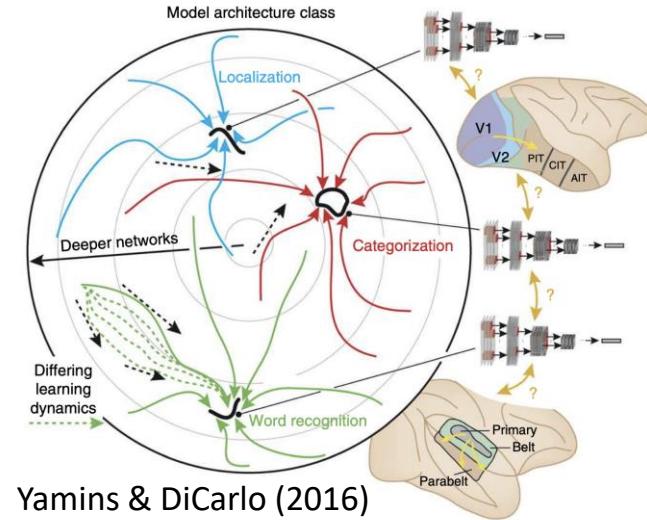
e.g. sparse coding,
redundancy reduction,
mutual information ...

Utilitarian

e.g. **recognize objects**,
chase prey, navigate ...



Using deep neural networks as goal-driven models of a system



Vision: object recognition.

Yamins & Hong et al. (2014), Schrimpf & Kubilius et al. (2018)

Audition: speech recognition, speaker & sound identification. Kell et al. (2018)

Somatosensation: shape recognition.

Zhuang et al. (2017)

Language: next-word prediction.
Schrimpf et al. (2021)

Decision making: context-dependent choice. Mante & Sussillo et al. (2013)

Proprioception: action recognition.
Sandbrink et al. (2023)

Recap from last time

- Language as a **bridge from perception to higher cognition**.
Language is not thought.
- **Human language network**: functionally defined.
Activation to sentences > lists of non-words
- **Brain recordings mostly fMRI**. Data limitations and noisiness,
quantify via cross-subject consistency “ceiling”
- Model classes in **natural language processing**:
embedding (e.g. GloVe), recurrent (e.g. LSTM), transformer (e.g. GPT)
- Evaluate model-to-brain similarity via **benchmarks**.
Combine experimental paradigm, biological dataset, and similarity metric

Comparative Measurements

Perreira2018

"Beekeeping encourages the conservation of local habitats. It is in every beekeeper's interest..."

 Fedorenko2016

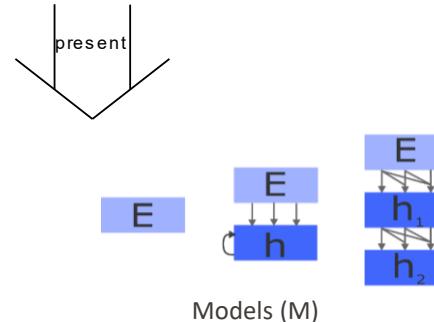
“Alex was tired so he took a nap.”

Sti Blank2014

"If you were to journey to the North of England, you would come to a valley that is surrounded by moors as high as mountains. It is in this valley where you..."

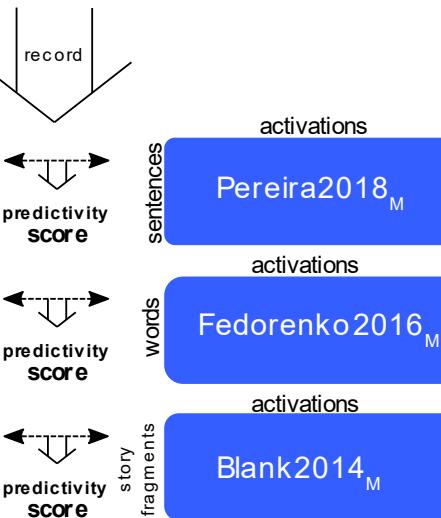
Experimental Participants

Human Brains (B)



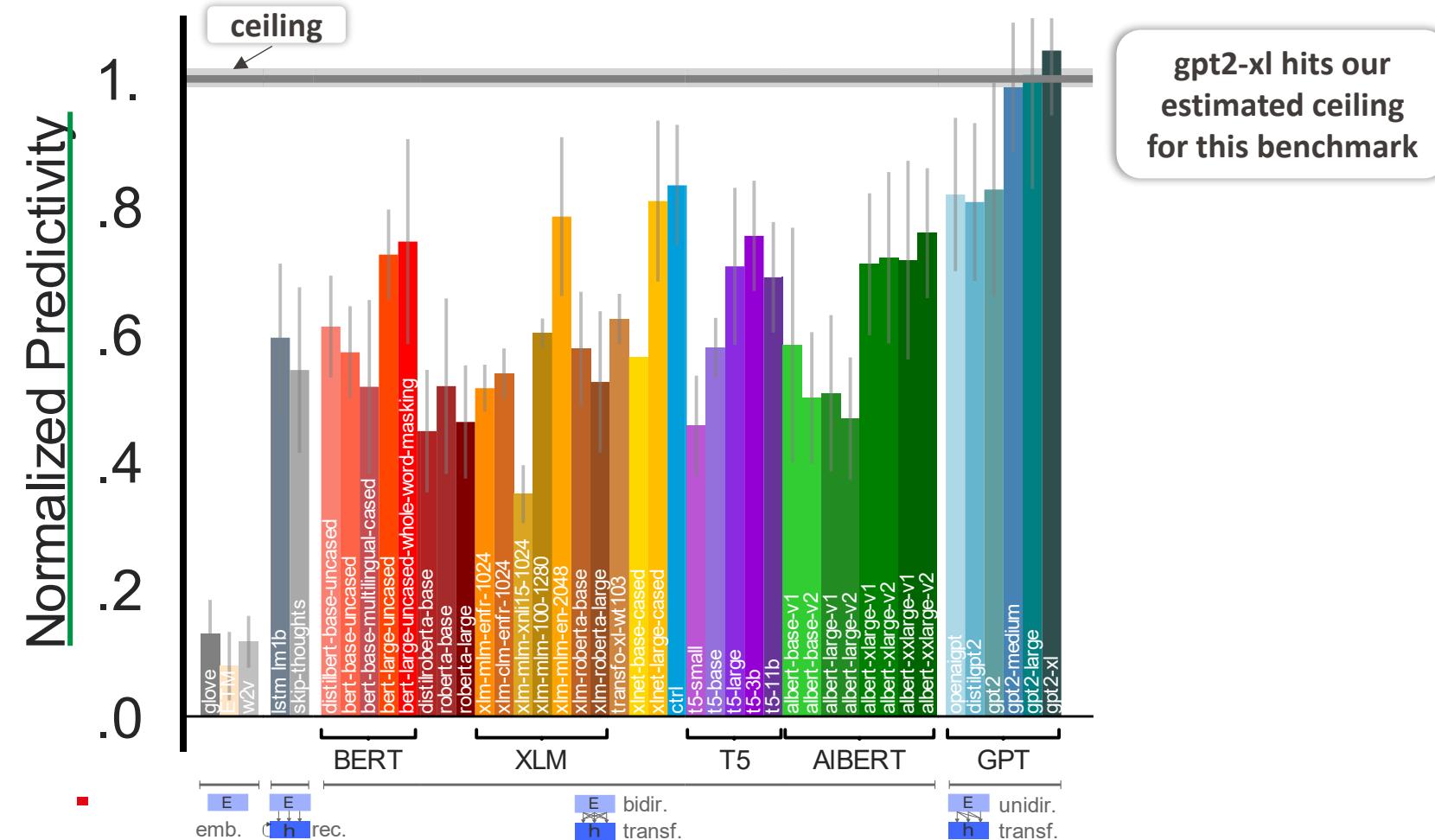
Models (M)

Comparative

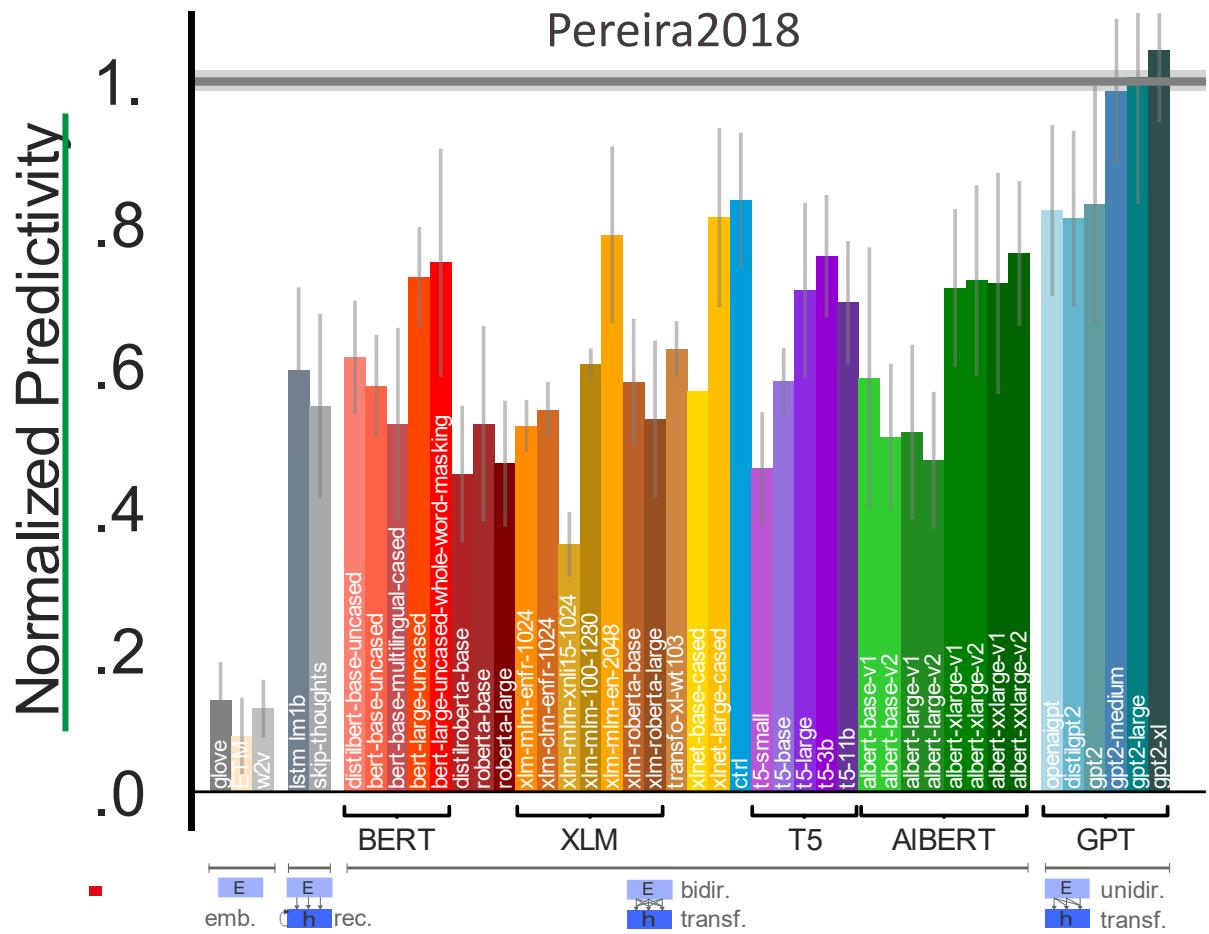
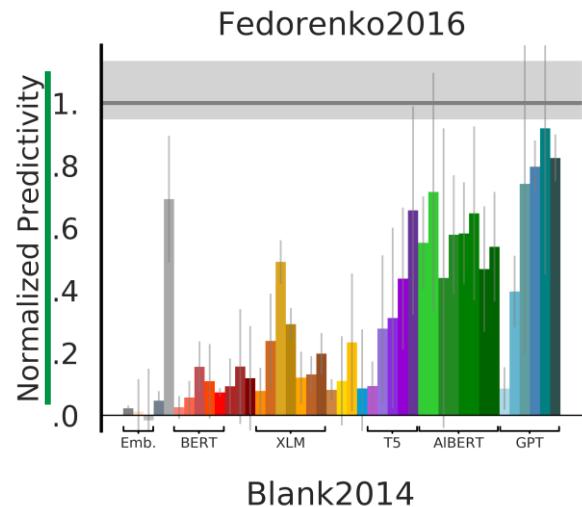
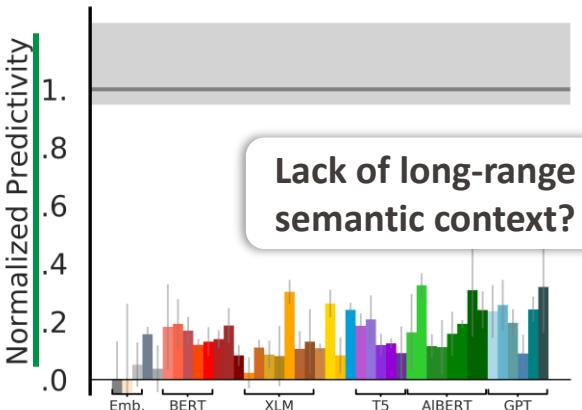


We want one model
to predict *all* data

EPFL Certain language models predict human language recordings

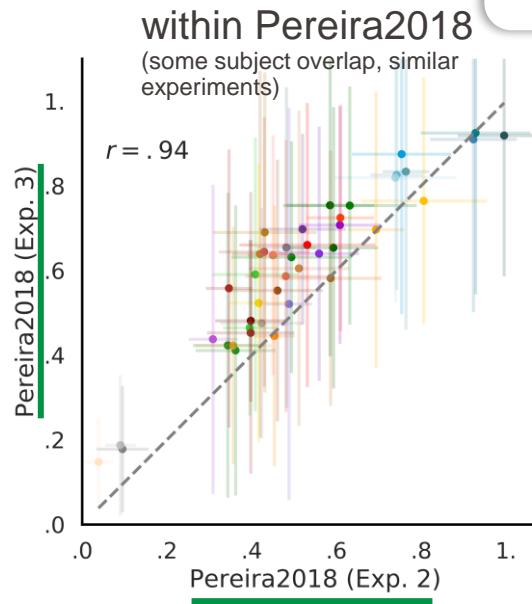
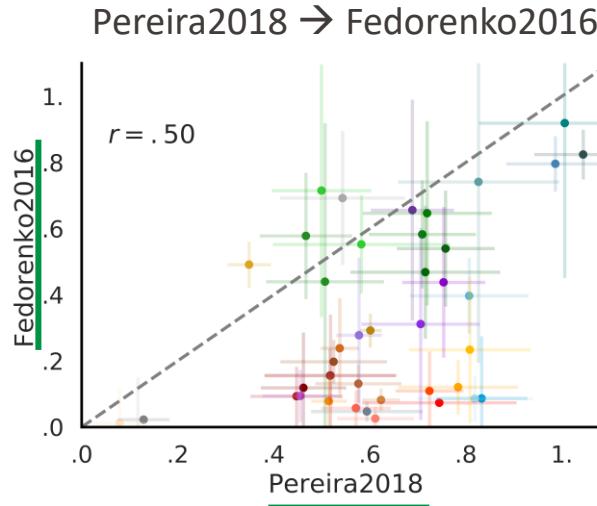


EPFL Language Models predict human language recordings

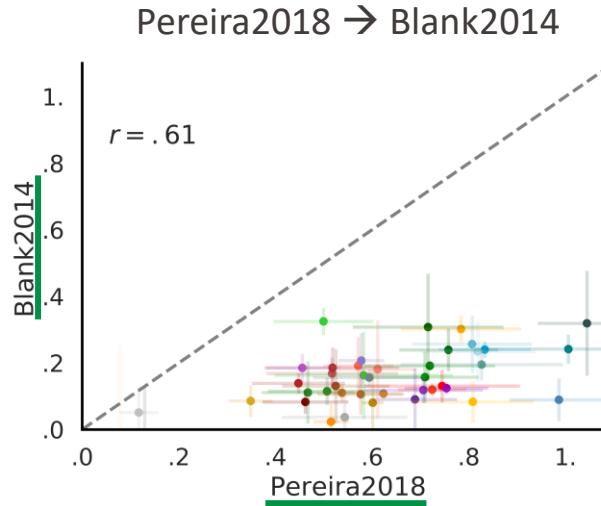


Control: model scores across benchmarks are correlated, although differences exist

Scores generalize to a good extent

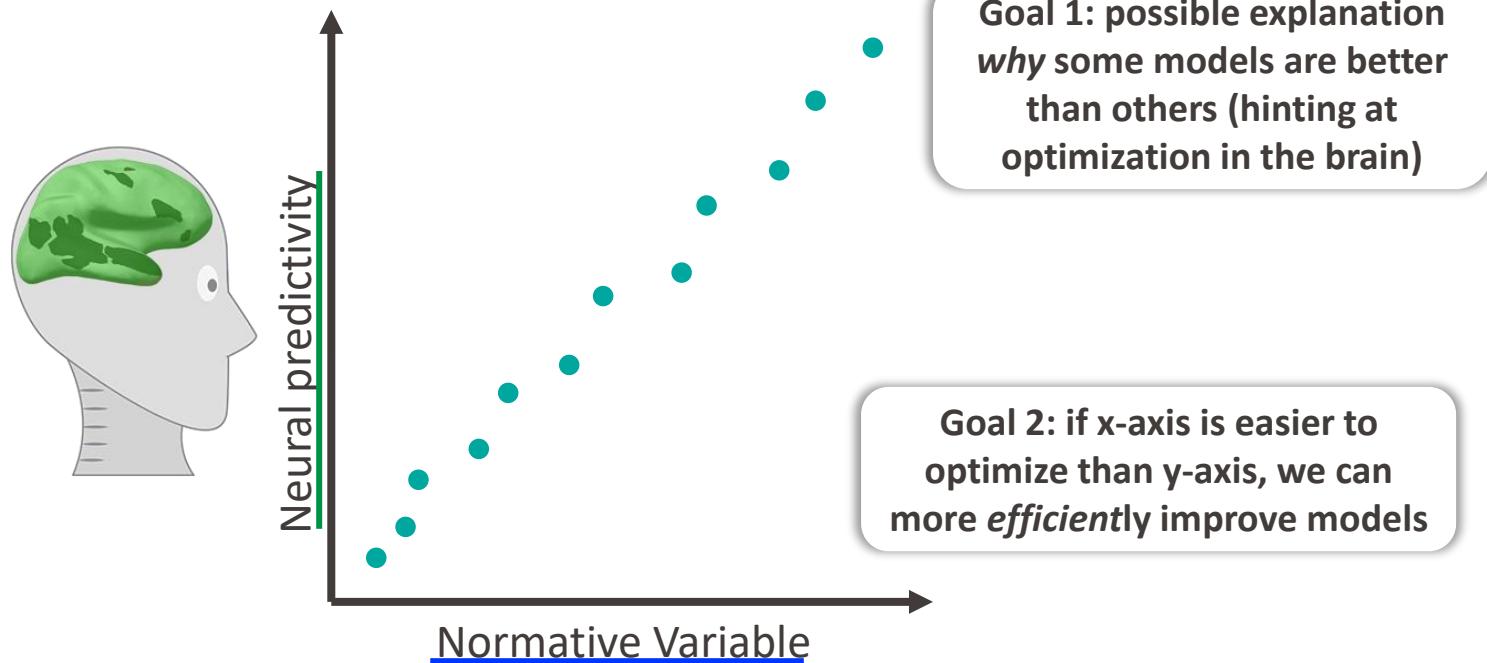


Are the discrepancies an issue? A plus?



But there are also differences, making each individual benchmark valuable

What explains the model differences?



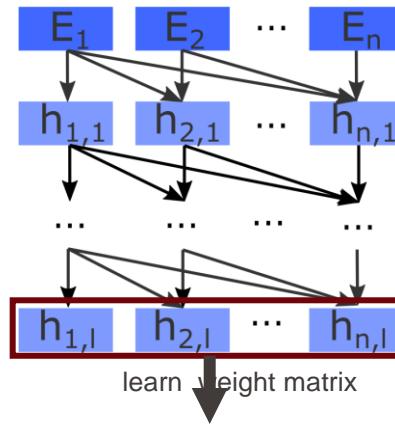
EPFL Next-Word Prediction on WikiText-2

= Gold dollar =

The gold dollar or gold one @@ dollar piece was a coin struck as a regular issue by the United States Bureau of the Mint from 1849 to 1889 . The coin had three types over its lifetime , all designed by Mint Chief Engraver James B. Longacre . The Type 1 issue had ...

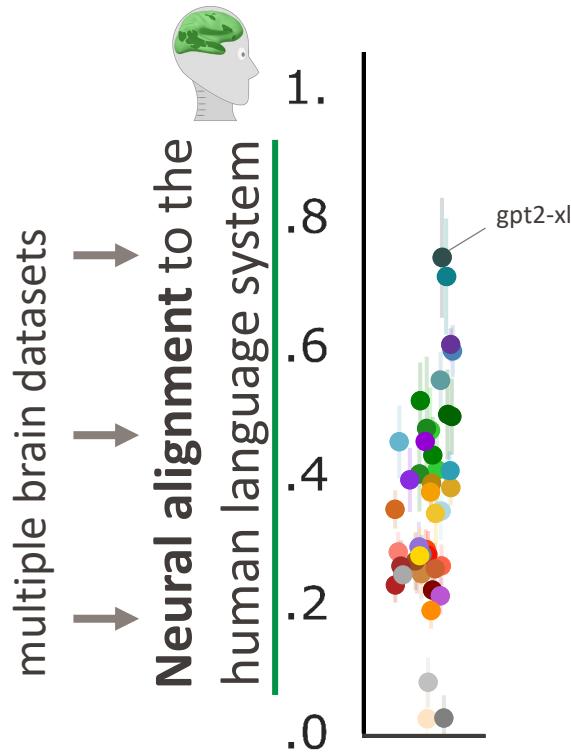
WikiText-2			
	Train	Valid	Test
Articles	600	60	60
Tokens	2,088,628	217,646	245,569
Vocab	33,278		
OoV	2.6%		

Alaska
Alaska is
Alaska is about
Alaska is about twelve
Alaska is about twelve times
Alaska is about twelve times larger
Alaska is about twelve times larger than
Alaska is about twelve times larger than New
Alaska is about twelve times larger than New York

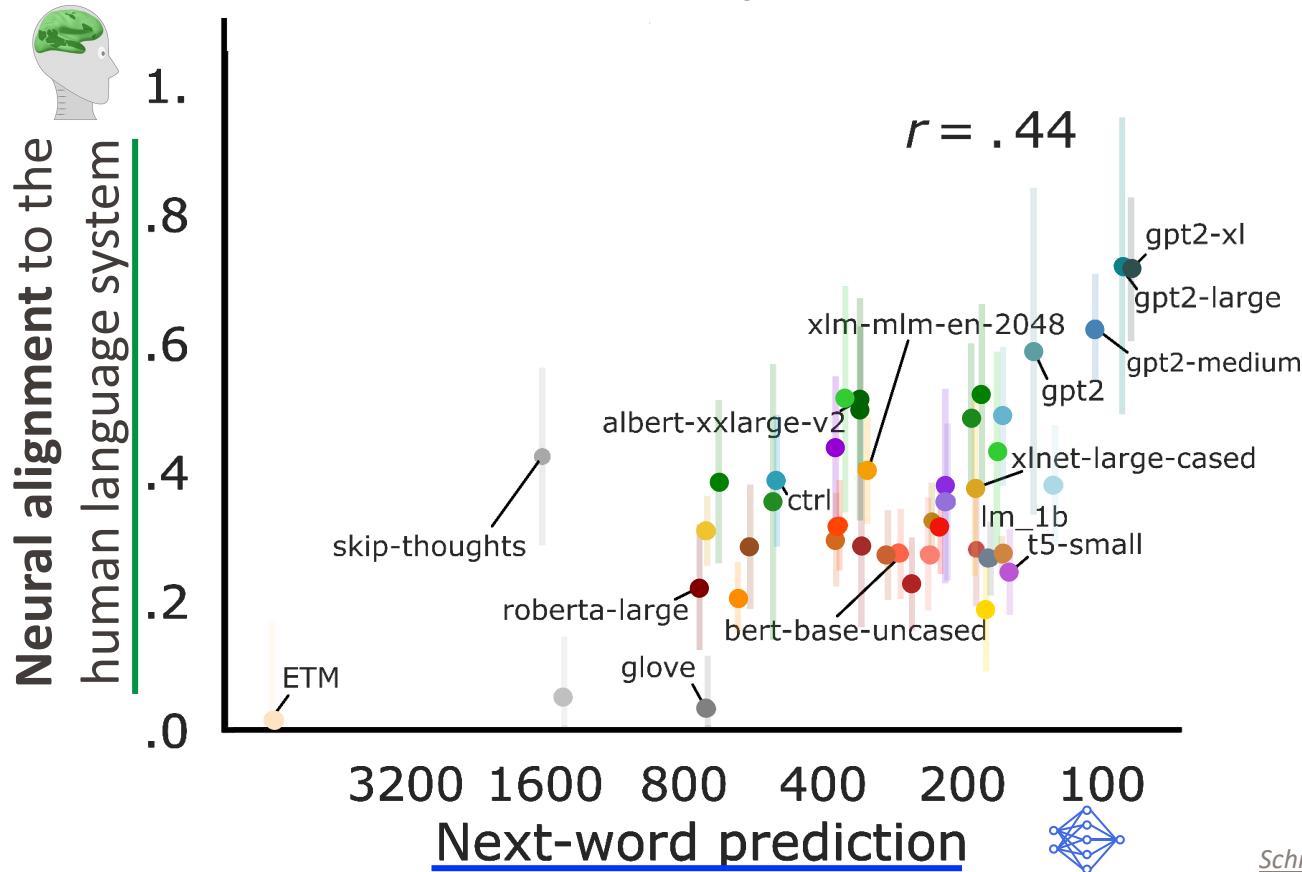


Surprisal of seeing
actual next word:
perplexity =
$$\exp(\text{NLL Loss})$$

The better models can predict the next word,
the more brain-like they are



The better models can predict the next word,
the more brain-like they are



What about other language tasks?

9 “General Language Understanding Evaluation” tasks:

Sentence grammaticality (CoLa)

Sentence sentiment (SST-2)

Semantic similarity (QQP, MRPC, STS-B)

Entailment (MNLT, RTE)

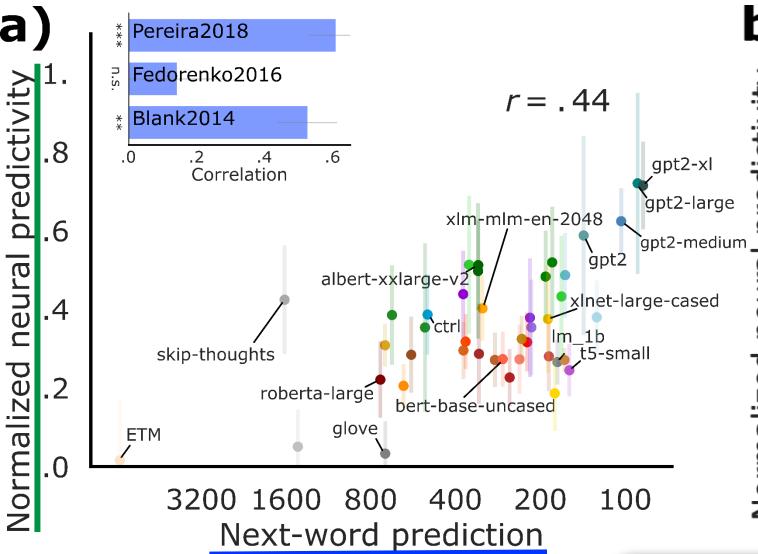
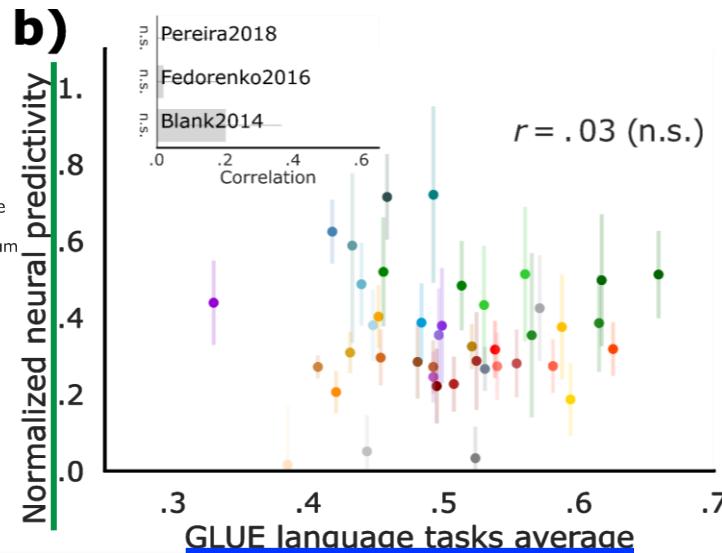
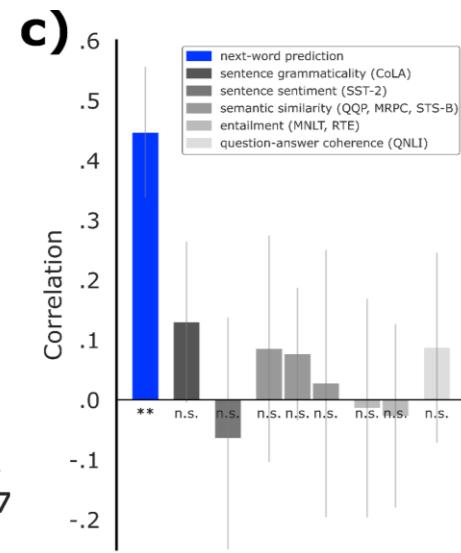
Question-answer coherence (QNLI)

Winograd (WNLI; ignored due to known issues)

Which of these model task performances will correlate with brain alignment?

1. *None*
2. *Some*
3. *All*

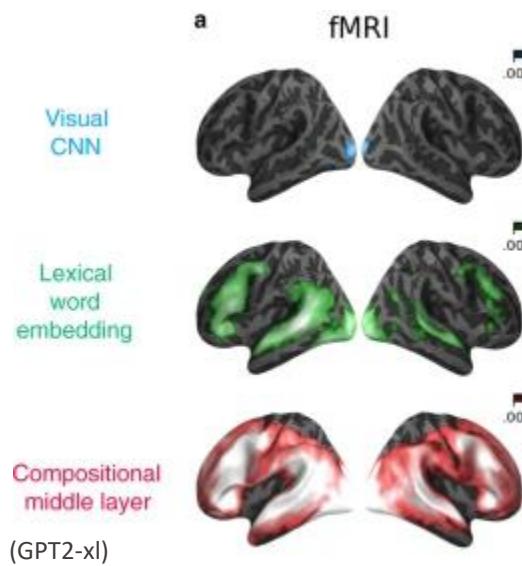
Next-Word Prediction performance selectively correlates with neural predictivity



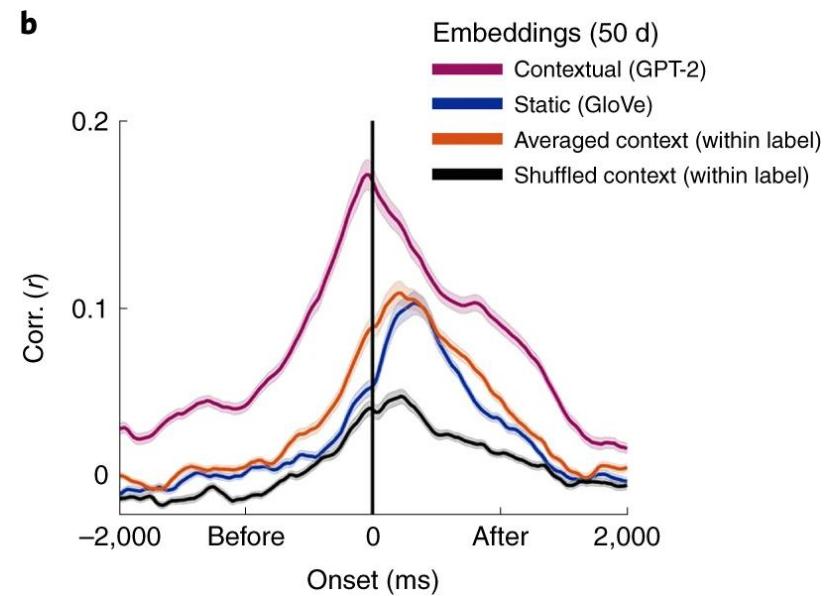
Online prediction may
fundamentally shape language
processing in the brain

Related work

Caucheteux et al. 2021



Goldstein et al. 2022



Separating different brain regions with different model types

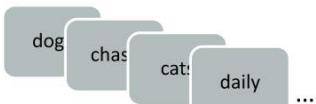
a. Data

functional Magnetic Resonance Imaging (fMRI, n=100)

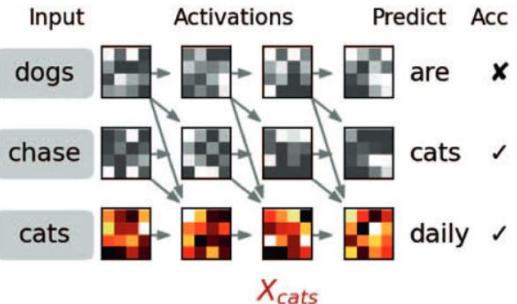


Magneto-encephalography (MEG, n=95)

Isolated sentences (n=400)



b. Method



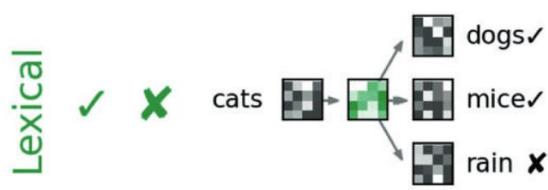
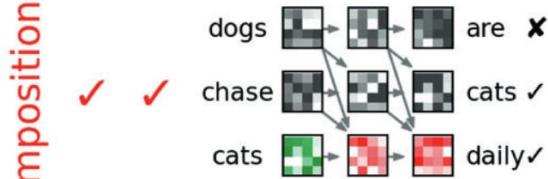
Brain score: $\text{corr}(WX_{\text{test}}, Y_{\text{test}})$
where: $\min_W |Y_{\text{train}} - WX_{\text{train}}|^2 + \lambda |W|^2$

- Idea: use a visual model, a non-contextual language model, and a contextual language model to identify a hierarchy of brain regions involved in reading

c. Embeddings

Context during train inference

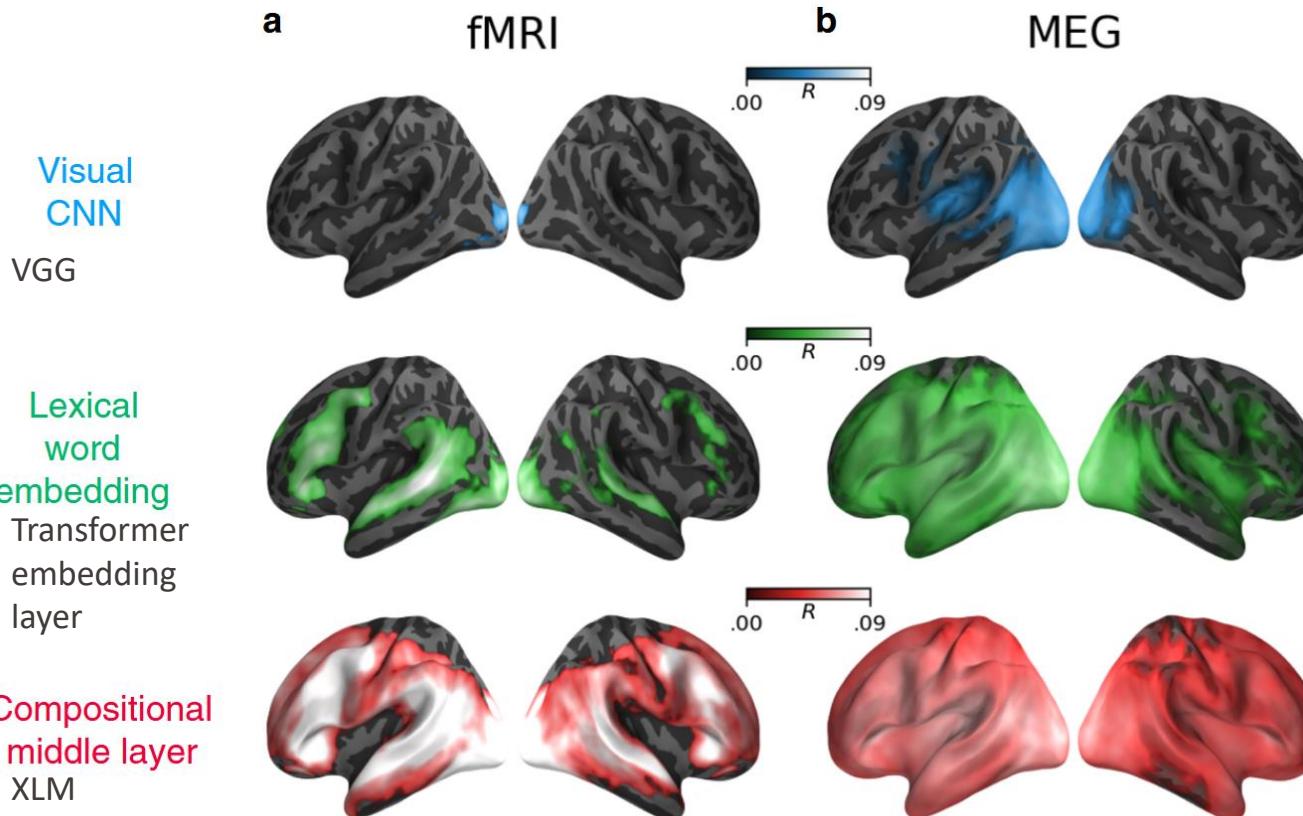
Input	Activations	Predict	
dogs		cats	✗
chase		cats	✓
cats		daily	✓



Caucheteux et al. 2021

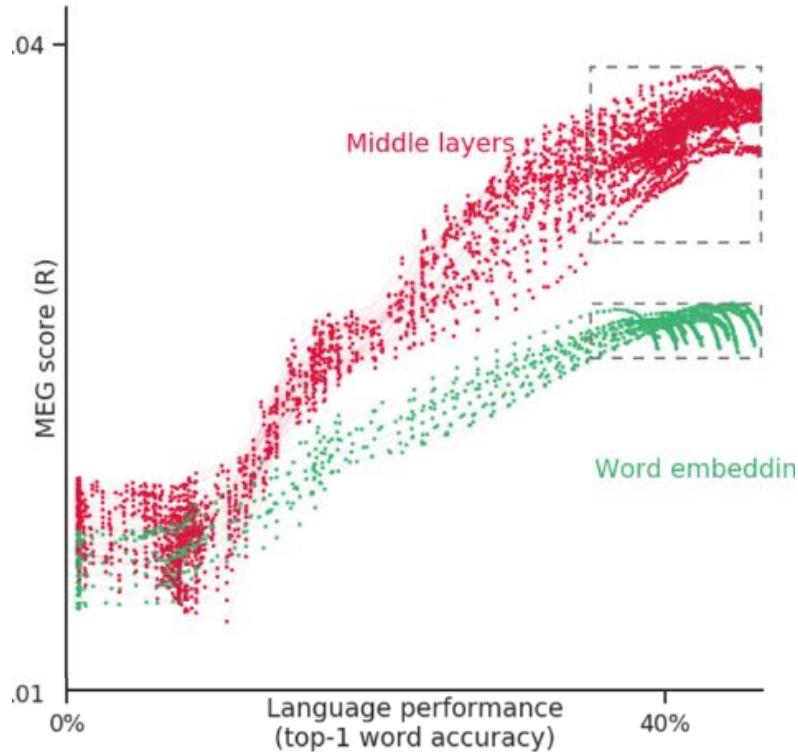
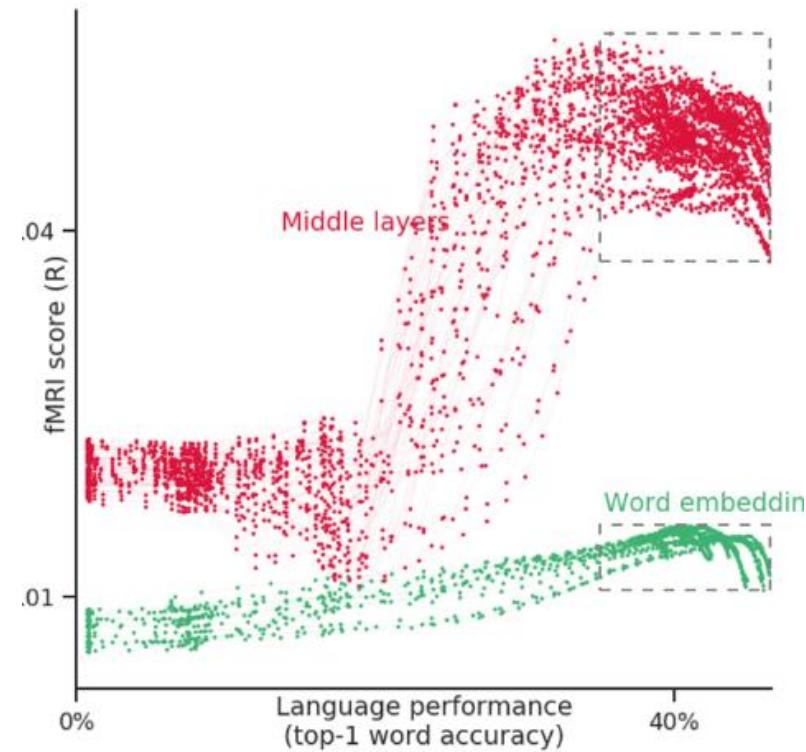
EPFL

Separating different brain regions with different model types



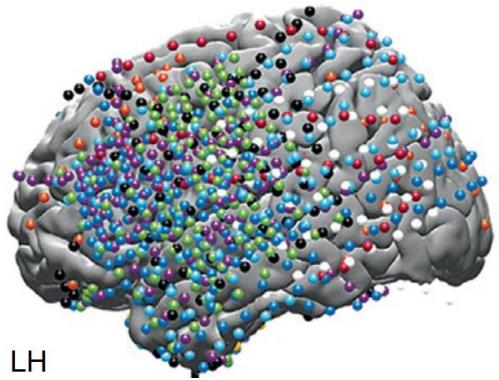
- Different model types best explain different brain regions
- Visual model best explains early visual cortex
- Contextual language model explains downstream regions

EPFL Same observation as we saw before: next-word prediction performance correlates with brain alignment

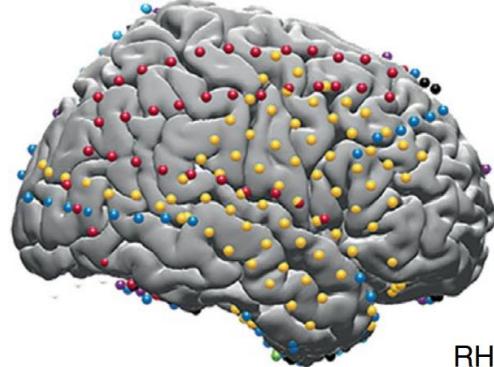


The brain's language system might itself engage in next-word prediction

Electrode coverage



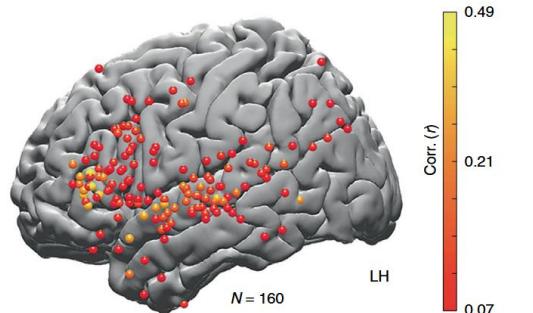
LH



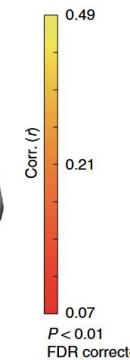
RH

- Pt_1
- Pt_2
- Pt_3
- Pt_4
- Pt_5
- Pt_6
- Pt_7
- Pt_8
- Pt_9

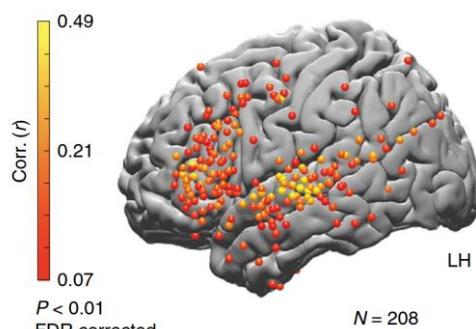
glove



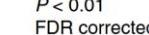
N = 160



gpt2-xl

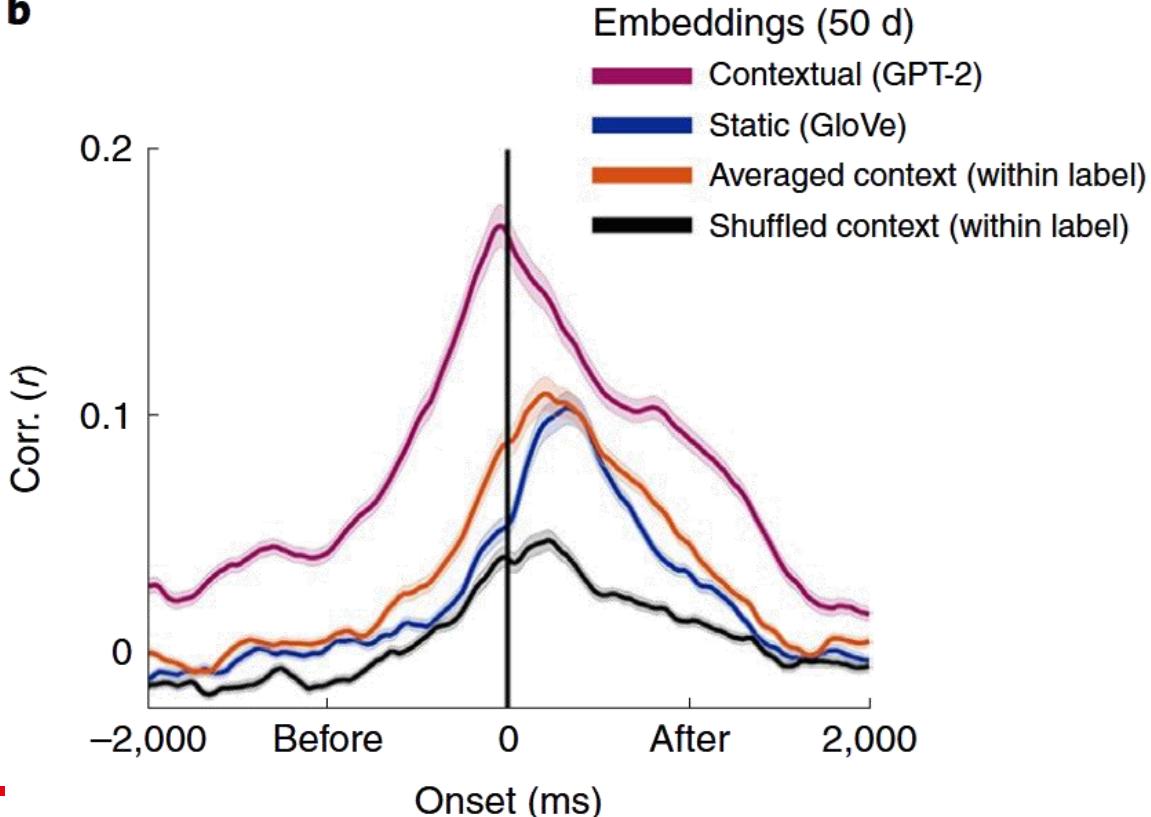


N = 208



- Also on human electrode recordings, GPT2 outperforms GloVe

The brain's language system might itself engage in next-word prediction

b

- Contextual embeddings in GPT2 outperform non-specific context and non-contextual embeddings
- Contextual embeddings predict brain activity even before the next word occurs. Since GPT2 predicts the next token, its representations should be focused on the future
- The authors infer that the brain therefore also performs next-word prediction

Why build models in the first place?

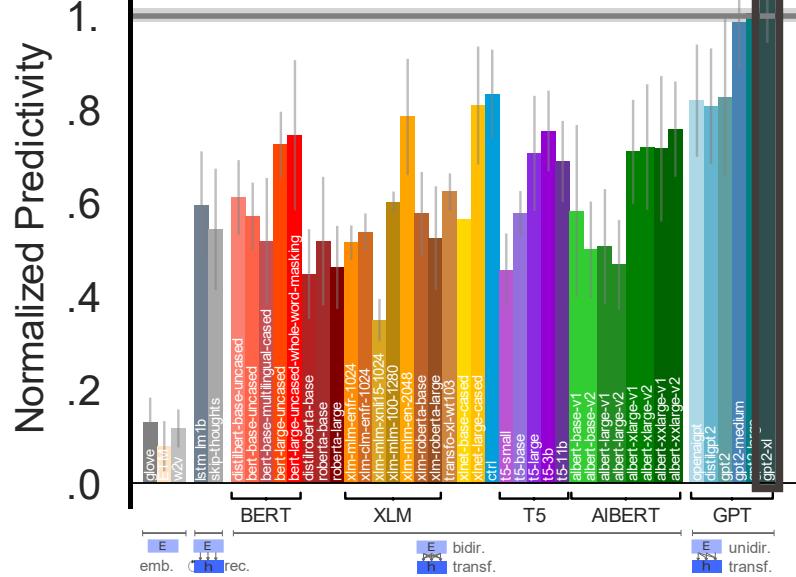
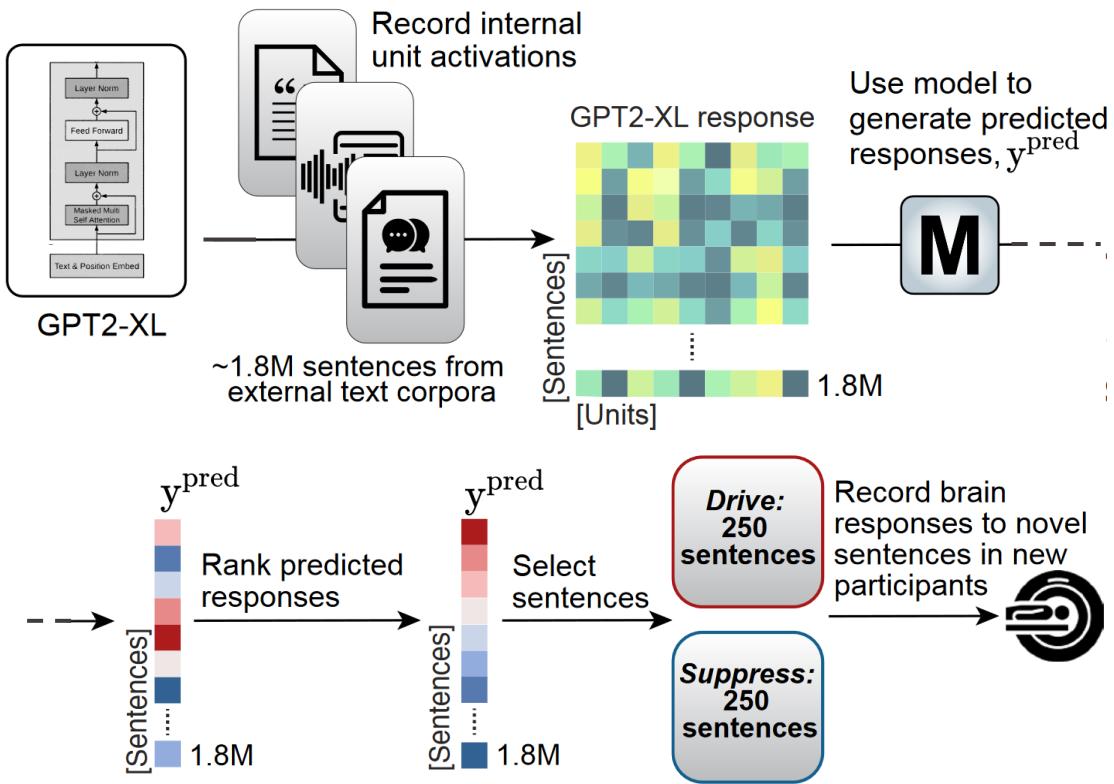
Efficient science

- Reproducible and uniquely specified (machine-executable)
- Integrative codification of state-of-the-art hypotheses across many pieces of evidence (potentially beyond the mind of any one individual)
- Quick prototyping of new experiments

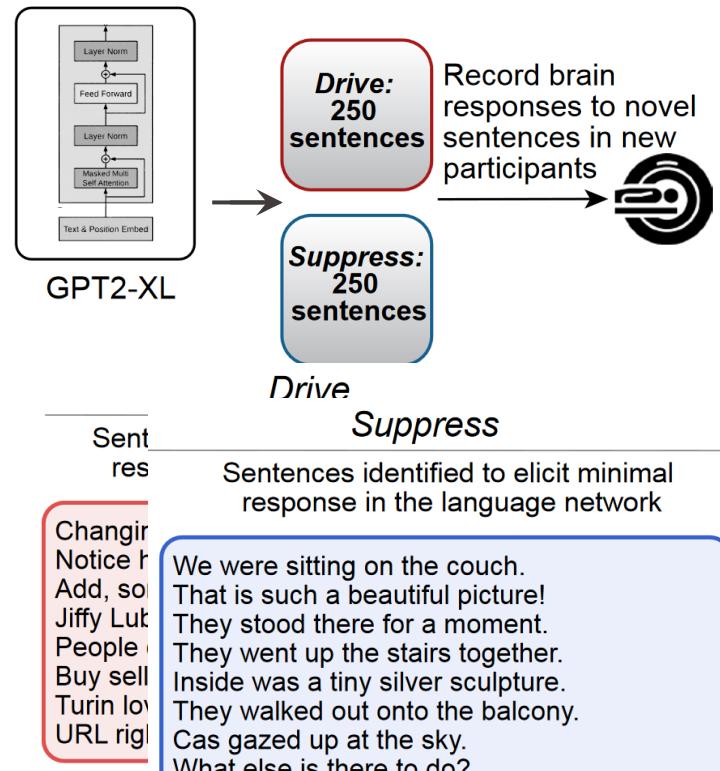
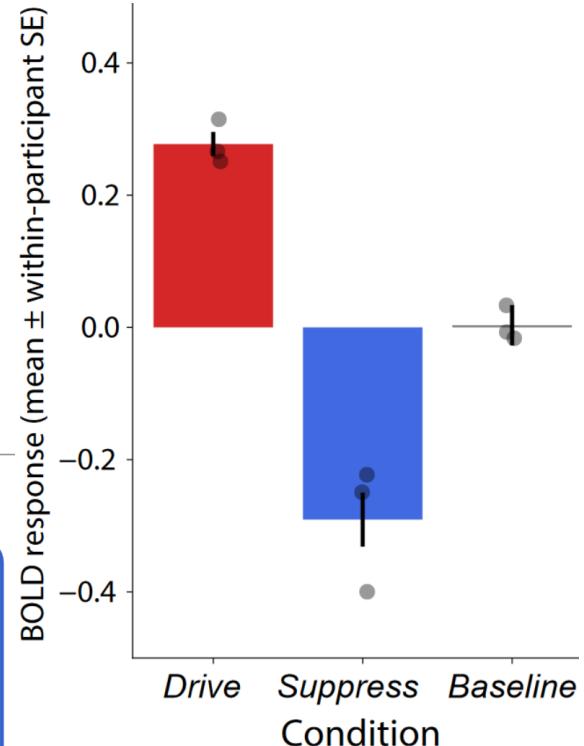
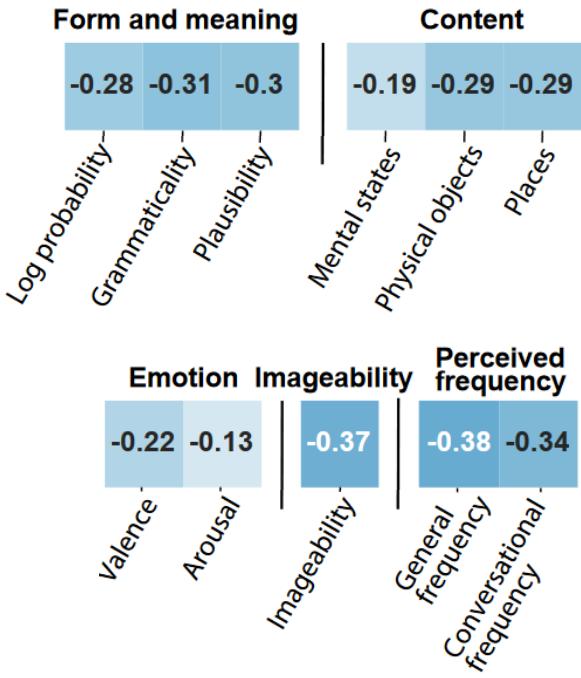
Long-term benefits

- Better AI (personally I'm not holding my breath on this one)
- Computational understanding of human behavior and underlying neural mechanisms
- Clinical applications

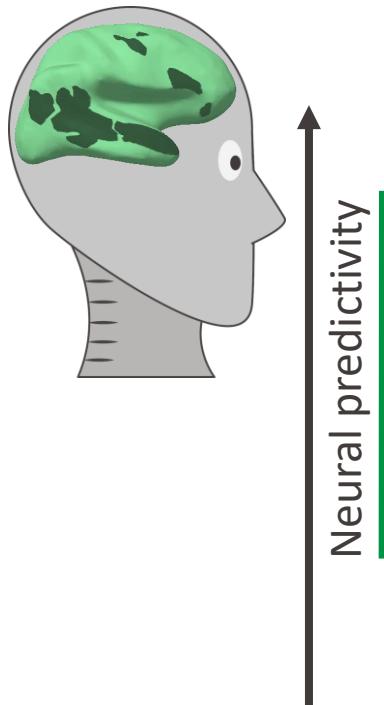
We can use brain-aligned LLMs to noninvasively control neural activity



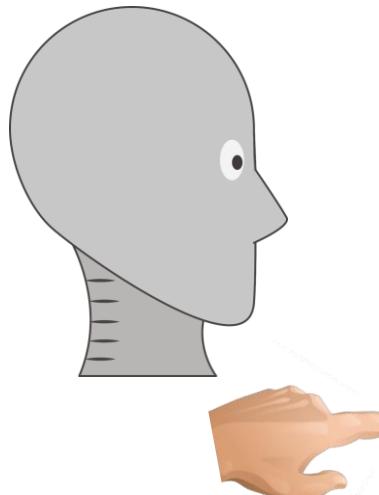
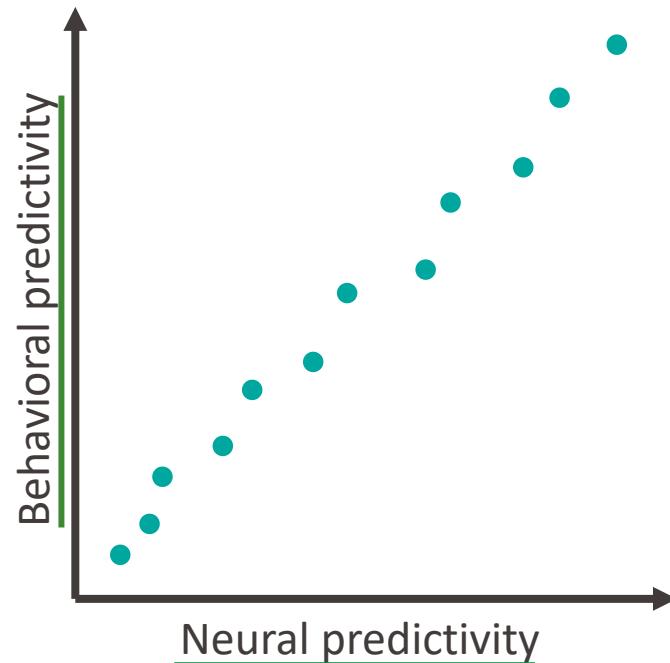
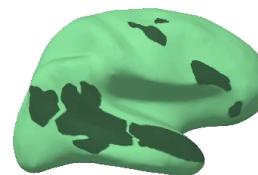
We can use brain-aligned LLMs to noninvasively control neural activity



Is any of this behaviorally relevant?



Is any of this behaviorally relevant?



~Illustration of behavioral setup: speed reading

Futrell et al. 2018

10256 words x 179 subjects

*If | you | were | to | journey | to | the | North |
| of | England, | you | would | come | to | a |
valley | that | is | surrounded | by | moors |
as | high | as | mountains. | It | is | in | this |
valley | where | you | would | find | the | city |
| of | Bradford, | where | once | a |
thousand | spinning | ...*

Treat reading times as representation target

The Natural Stories Corpus

Richard Futrell¹, Edward Gibson¹, Harry J. Tily², Idan Blank¹,
Anastasia Vishnevetsky¹, Steven T. Piantadosi³, and Evelina Fedorenko^{4,5}

¹MIT Department of Brain and Cognitive Sciences ²Netflix, Inc.

³University of Rochester Department of Brain and Cognitive Sciences

⁴Massachusetts General Hospital Department of Psychiatry

⁵Harvard Medical School Department of Psychiatry

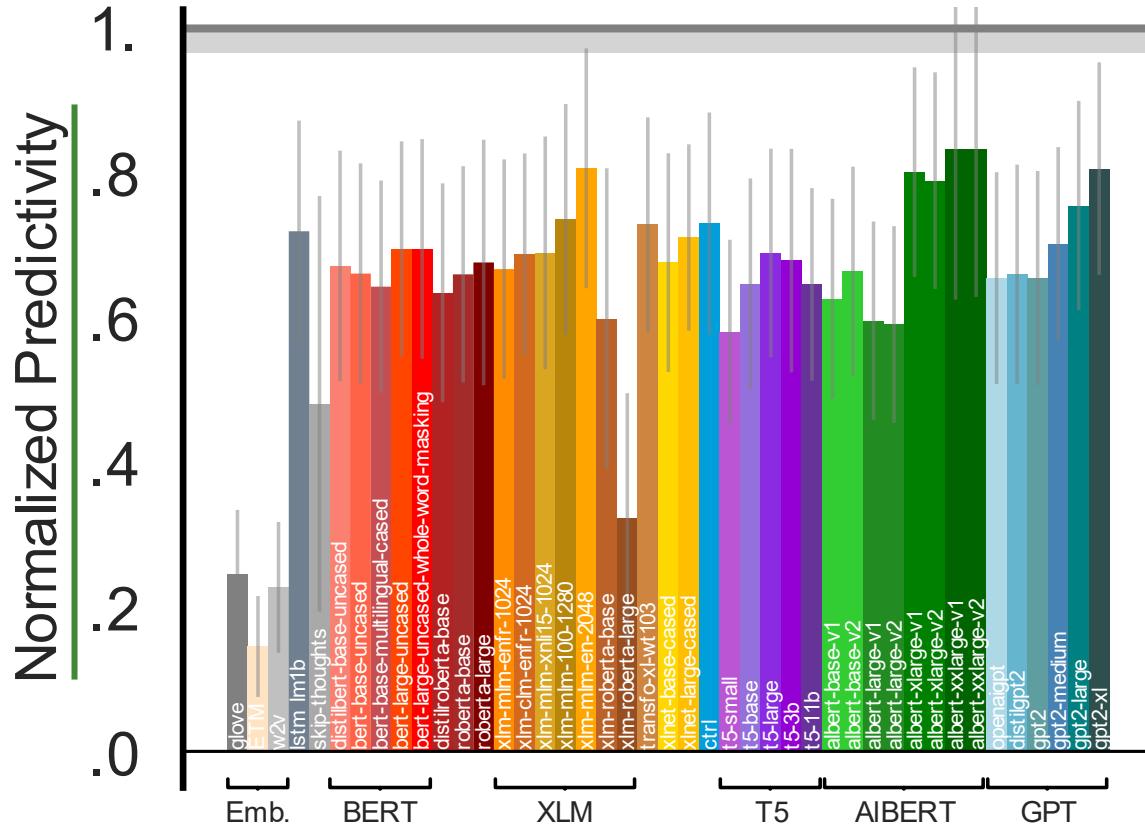
{futrell, egibson, iblank, evelina9}@mit.edu,
hal.tily@gmail.com, staseyvi@mail.med.upenn.edu

Abstract

It is now a common practice to compare models of human language processing by comparing how well they predict behavioral and neural measures of processing difficulty, such as reading times, on corpora of rich naturalistic linguistic materials. However, many of these corpora, which are based on naturally-occurring text, do not contain many of the low-frequency syntactic constructions that are often required to distinguish between processing theories. Here we describe a new corpus consisting of English texts edited to contain many low-frequency syntactic constructions while still sounding fluent to native speakers. The corpus is annotated with hand-corrected Penn Treebank-style parse trees and includes self-paced reading time data and aligned audio recordings. Here we give an overview of the content of the corpus and release the data.

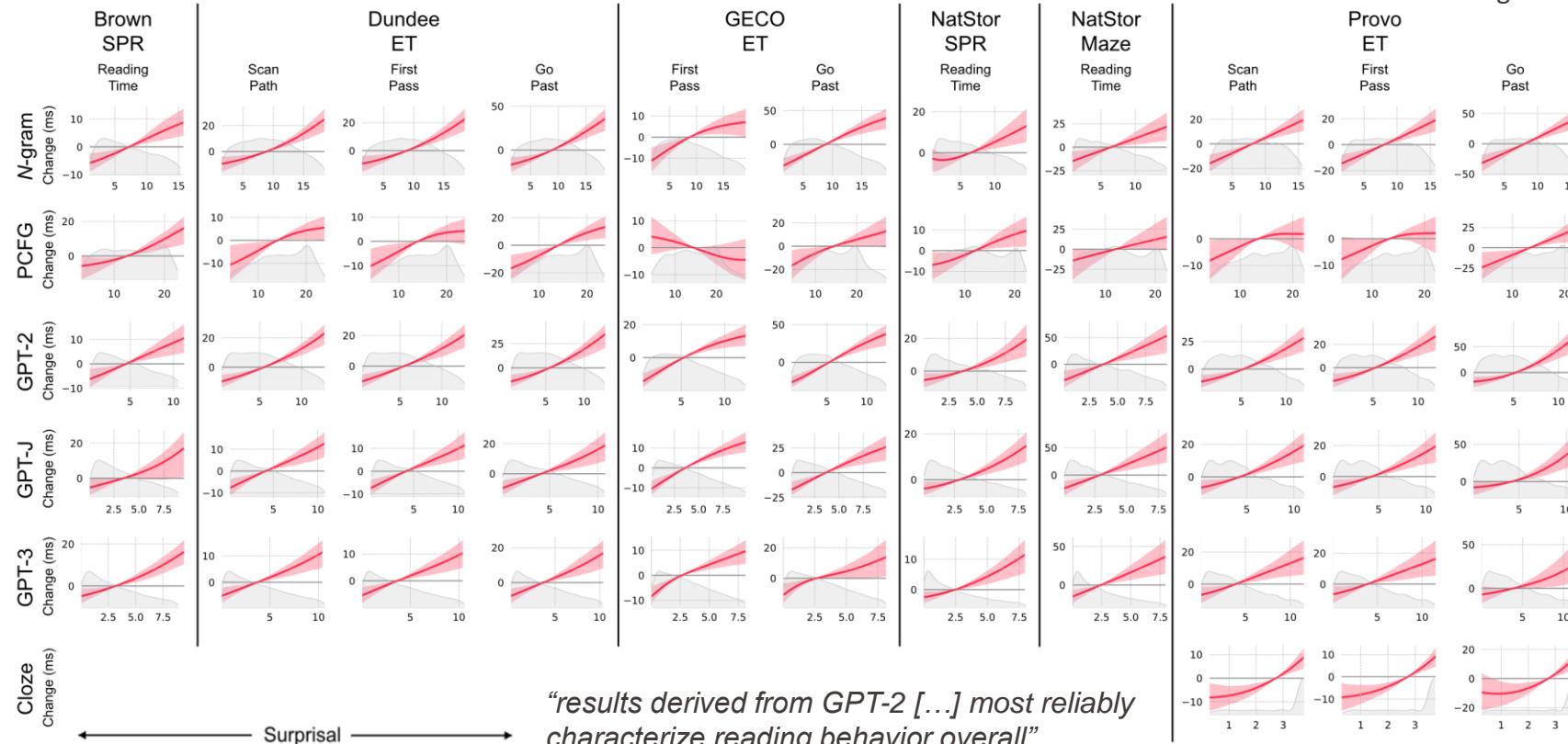
Keywords: Cognitive modeling, reading time, psycholinguistics

Futrell2018

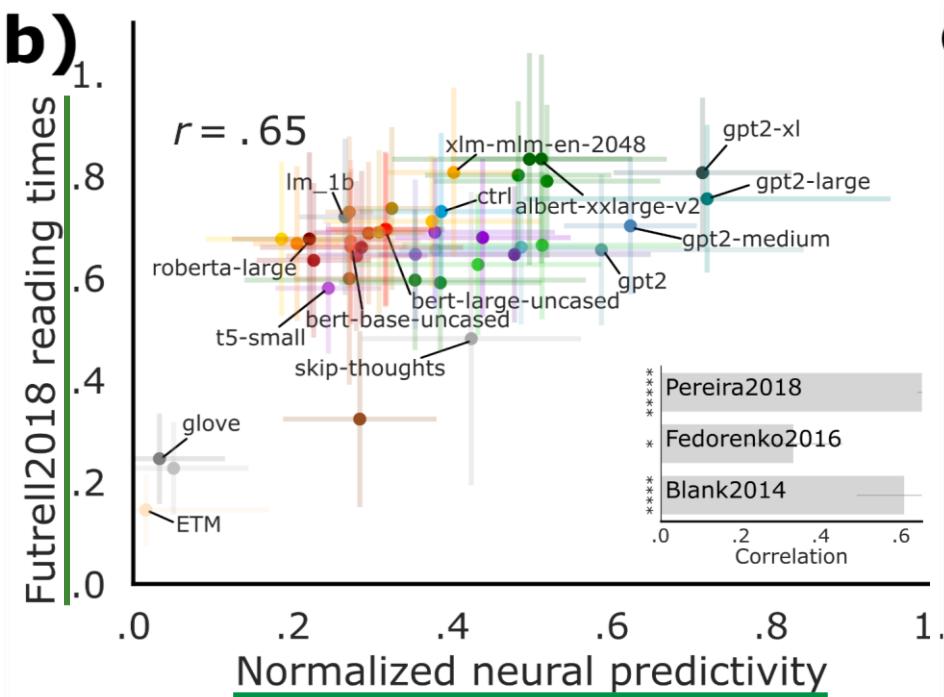


GPT-2 continues to shine in predicting human reading times

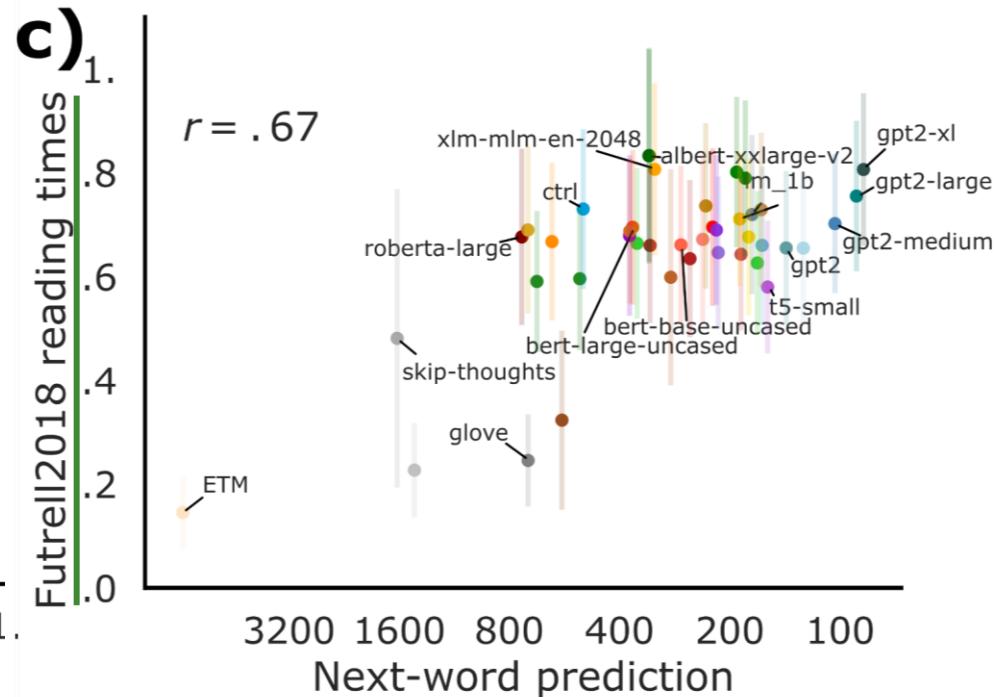
See also Smith & Levy 2013:
effect of word probability on reading time is logarithmic



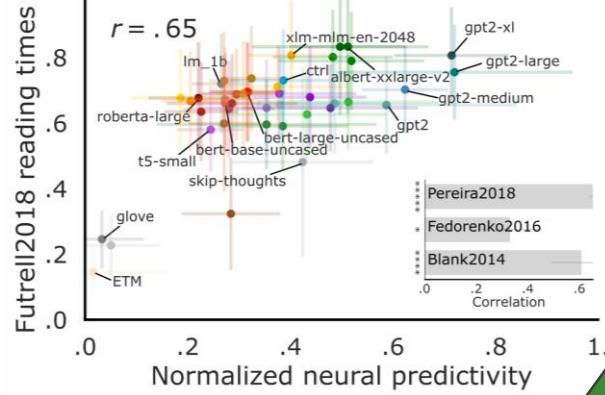
Neural scores correlate with Behavioral scores



Task scores correlate with Behavioral scores

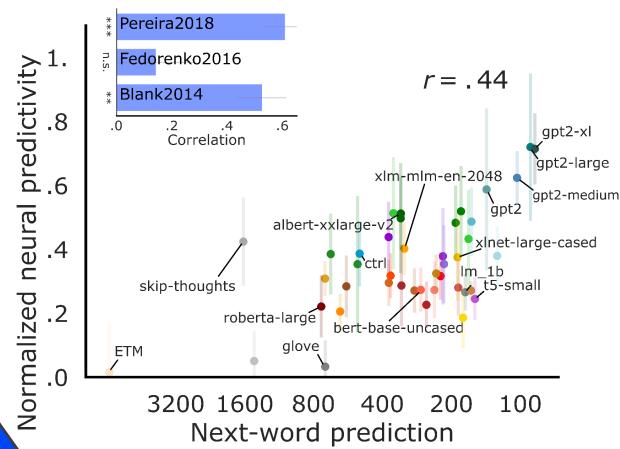


Neural



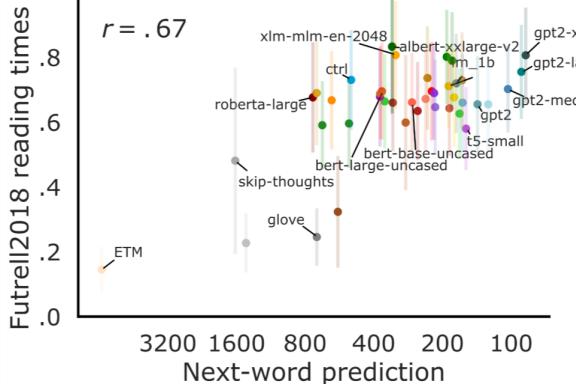
Integrative Modeling:
link neural mechanisms,
behavior, and computation

Schrimpf et al. Neuron 2020

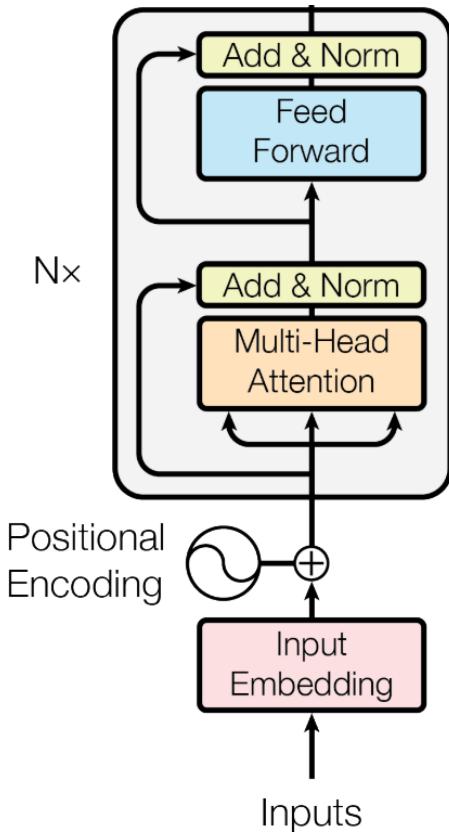


Behavioral

Normative Task



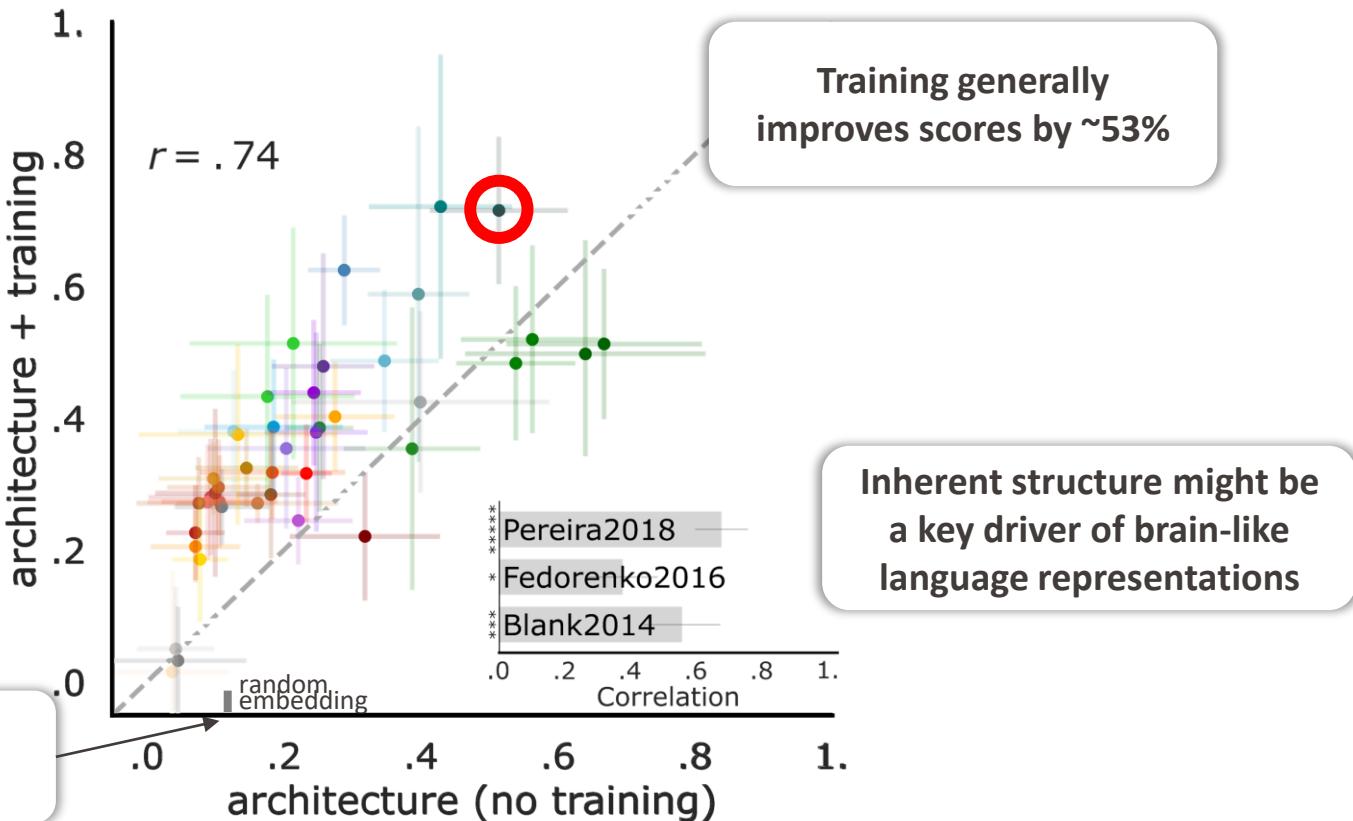
What is the relative importance of evolutionary and learning-based optimization?



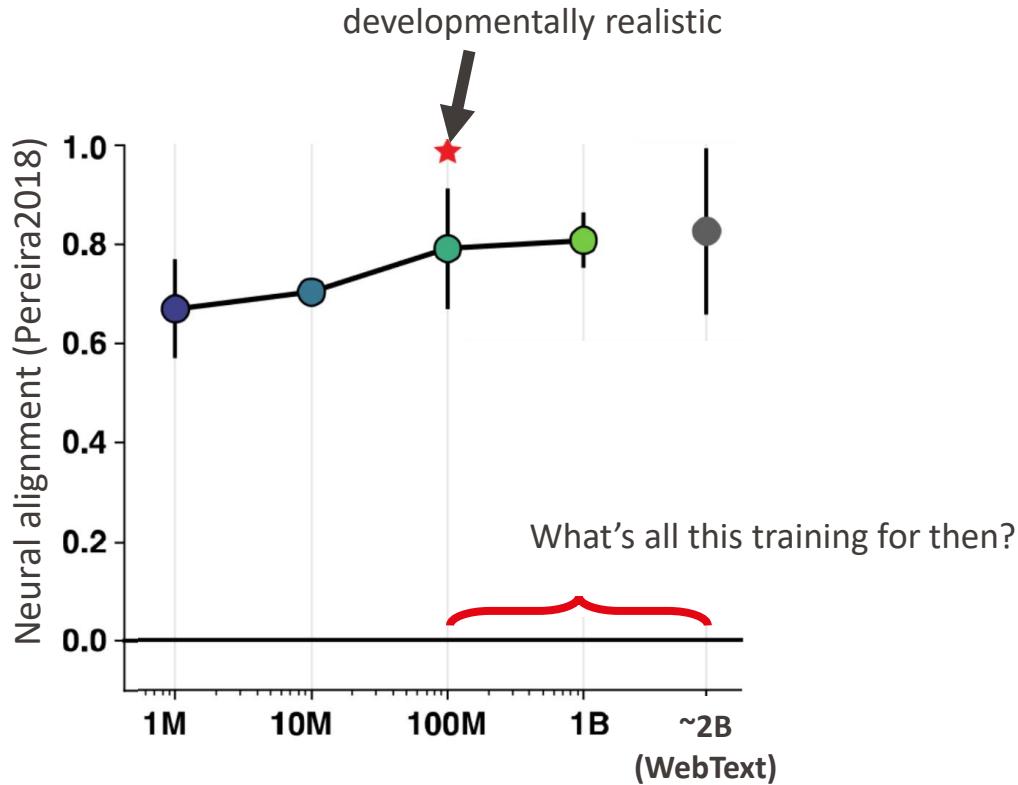
Evolution \simeq community optimization over architectural properties

Experience-dependent learning \simeq updating of weights over training

Architecture substantially contributes to models' brain predictivity



LLMs align to the brain's language system after developmentally realistic amounts of training



Take-home messages

- Particular language models predict the human language system and behaviors
- Model-to-brain alignment is explained by next-word-prediction performance
- Model-to-behavior alignment correlates with brain, and task performance
- The best models can be used to noninvasively control brain activity
- Architecture and training both contribute to the brain-likeness of model representations

