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EPFL Normative frameworks

o T

Information theoretic Utilitarian
e.g. sparse coding, e.g. recognize objects,
redundancy reduction, chase prey, navigate ...

mutual information ...




=PrL Using deep neural networks as goal-driven models of a system

Model architecture class

>
- _
g

Vision: object recognition. Yamins & DiCarlo (2016)

Yamins & Hong et al. (2014), Schrimpf &

Kubilius et al. (2018) N Language: next-word prediction.

@ Audition: speech recognition, speaker & -

=== Schrimpf et al. (2021)

sound identification. Kell et al. (2018) ti Decision making: context-dependent
choice. Mante & Sussilo et al. (2013)

Somatosentation: shape recognition.

Zhuang et al. (2017) Proprioception: action recognition.
ﬁ Sandbrink et al. (2023)




=PFL  Recap from last time

= Language as a bridge from perception to higher cognition.
Language is not thought.

= Human language network: functionally defined.
Activation to sentences > lists of non-words

= Brain recordings mostly fMRI. Data limitations and noisiness,
guantify via cross-subject consistency “ceiling”

= Model classes in natural language processing:
embedding (e.g. GloVe), recurrent (e.g. LSTM), transformer (e.g. GPT)

= Evaluate model-to-brain similarity via benchmarks.
Combine experimental paradigm, biological dataset, and similarity metric



=PrL

i "B eekeeping encourages the conservation of local
Pereira2018 habitats. It is in every beekeeper's interest..."

E Fedorenko2016  “Alex was tired so he took a nap.”
— “If you were to joumey to the North of E ngland, you
ET) Blank2014 would come to a valley that is surrounded by moors
as high as mountains. It is in this valley where you...”
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=pr Certain language models predict human language recordings

gpt2-xl hits our

estimated ceil
for this benchmark
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=prLLanguage Models predict human language recordings

Fedorenko2016
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=prL Control: model scores across benchmarks are
comrelated, although differences exist

Are the discrepancies

Scores generalize an issue? A plus?

to a good extent
within Pereira2018

(some subject overlap, similar

. experiments) Pereira2018 = Fedorenko2016 Pereira2018 - Blank2014
. L,
s
r=.94 . /", 1| 1 /’, 1 7
Loy * /7 < d
n‘T 8 oo //, r=.50 ,’, 1 r=.61 ’/’
L% =S ,/ 5'8 ’,/ ot - 8 ,’/’
|6 il S L% = e
— [ Y ,I v 6 Y ’./ [ ] o 6 ,/
o 1 e - . N -,
. ﬂ£, GLJ /’: %o S ”/
g 4 ..‘ll, ol.4 e g 4 e
g e 8 z// . 7 T .
’ o® -,

L s L -7 * e e "o
o R4 2 R . 2 e e [ 2. . ®

2 ’ PR o . - i L S L

‘/// /’,. i N e %o | ,// ¢ - ®e® o T
s .0 .0 -
o L .0 2 4 6 8 1. .0 2 4 6 8 1.
I 0 2 4 6 8 1. Pereira2018 Pereira2018

Pere'ira201é.3 (Exp..Z)

But there are also differences, making
= each individual benchmark valuable



EPFL What explains the model differences?

Neural predictivity

Goal 1: possible explanation

¢ why some models are better

than others (hinting at
optimization in the brain)

Goal 2: if x-axis is easier to
optimize than y-axis, we can

. more efficiently improve models

>

Normative Variable



=rrL Next-Word Prediction on WikiText-2

= Gold dollar =

The gold dollar or gold one @-@ dollar piece was a coin
struck as a regular issue by the United States Bureau of the
Mint from 1849 to 1889 . The coin had three types over its
lifetime , all designed by Mint Chief Engraver James B.

Longacre . The Type 1 issue had ...

WikiText-2
Train Valid
Articles 600 &0

Tokens 2,088,628 217646
Vocab 33,278

OoV 2.6%

Merity et al. 2016

Test

60

245,569

Alaska

Alaska is

Alaska is about

Alaska is about twelve

Alaska is about twelve times

Alaska is about twelve times larger

Alaska is about twelve times larger than
Alaska is about twelve times larger than New

Alaska is about twelve times larger than New York

Surprisal of seeing
actual next word:
perplexity =
exp(NLL Loss)

afternoon | alaska | animation | article | ...



ePFL - The better models can predict the next word,
the more brain-like they are
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https://www.pnas.org/content/118/45/e2105646118
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The better models can predict the next word,
the more brain-like they are
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https://www.pnas.org/content/118/45/e2105646118

=F7L What about other language tasks?

*IGLUE

9 “General Language Understanding Evaluation” tasks:

Sentence grammaticality (ColLa) Which of these model task
Sentence sentiment (SST-2) performances will correlate
Semantic similarity (QQP, MRPC, STS-B) with brain alignment?

1. None

Entailment (MNLT, RTE)
_ 2. Some
Question-answer coherence (QNLI) 3 Al



=PrL
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fundamentally shape language

processing in the brain

Correlation

Next-Word Prediction performance selectively
comrelates with neural predictivity

El next-word prediction

Il sentence grammaticality (ColA)

Il sentence sentiment (SST-2)

BN semantic similarity (QQP, MRPC, STS-B)
entailment (MNLT, RTE)
guestion-answer coherence (QNLI)

* n.s. ns.ns.ns. ns. WS ns.



=PrL  Related work

Caucheteux et al. 2021

. fMRI

Visual

CNN
-
00
Lexical
word
embedding
-
0o
Compositional
middle layer ’ .
(GPT2-xl)

Corr. (0

Goldstein et al. 2022

0.2r

Embeddings (50 d)

mmmmm Contextual (GPT-2)

= Static (GloVe)

mmmm— Averaged context (within label)
= Shuffled context (within label)

—-2,000

Before 0 After 2,000
Onset (ms)


https://www.nature.com/articles/s42003-022-03036-1
https://www.nature.com/articles/s41593-022-01026-4

= |dea: use a visual model, a non-
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https://www.nature.com/articles/s42003-022-03036-1

=PFL Separating different brain regions
with different model types

Visual
CNN

VGG

Lexical
word

embedding
Transformer

embedding
layer

Compositional

middle layer
XLM

fMRI _
p— = Different model

types best
explain different
brain regions

= Visual model

o F o best explains
early visual
cortex

= Contextual

language model

explains

downstream

regions
Caucheteux et al. 2021

R



https://www.nature.com/articles/s42003-022-03036-1

£PFL Same observation as we saw before: next-word
prediction performance correlates with brain alignment
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https://www.nature.com/articles/s42003-022-03036-1

=PFL  The brain’s language system might itself engage in

next-word prediction

Electrode coverage

0.49

Corr. (0

0.07
P<0.01
FDR corrected

@ Pt_1 0.49
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@ P33
@ P4
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@ rPi7
Pt 8

@ PLo e
- P<0.01

FDR corrected

Corr. ()
o
n

N =208

= Also on human
electrode
recordings,
GPT2
outperforms
GloVe

Goldstein et al. 2022



https://www.nature.com/articles/s41593-022-01026-4

=PFL  The brain’s language system might itself engage in
next-word prediction

0.2

Corr. (1)

Embeddings (50 d)

s Contextual (GPT-2)

s Static (GloVe)

s Averaged context (within label)
= Shuffled context (within label)

—2,000

Before

0

After 2,000

Onset (Ms)

= Contextual embeddings

in GPT2 outperform non-
specific context and non-
contextual embeddings

= Contextual embeddings

predict brain activity even
before the next word
occurs. Since GPT2
predicts the next token,
its representations should
be focused on the future

The authors infer that the
brain therefore also
performs next-word
prediction

Goldstein et al. 2022



https://www.nature.com/articles/s41593-022-01026-4

=P7L Why build models in
the first place?

Efficient science

= Reproducible and uniquely specified (machine-executable)

= Integrative codification of state-of-the-art hypotheses across many pieces
of evidence (potentially beyond the mind of any one individual)

= Quick prototyping of new experiments

Long-term benefits

= Better Al (personally I'm not holding my breath on this one)

= Computational understanding of human behavior
and underlying neural mechanisms

= Clinical applications



£PFL  We can use brain-aligned
LLMs to noninvasively
control neural activitv
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https://www.nature.com/articles/s41562-023-01783-7

=PFL  We can use brain-aligned
LLMs to noninvasively
control neural activity
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https://www.nature.com/articles/s41562-023-01783-7

EPFL Is any of this behaviorally relevant?

Neural predictivity




EPFL Is any of this behaviorally relevant?
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""" *lllustration of behavioral setup: speed reading

Eventually

https://youtu .be/SPPe?7 -tusOg?t=



https://youtu.be/SPPe7-tusOg?t=15

=PFL Behavioral target: human reading times

The Natural Stories Corpus

Richard Futrell', Edward Gibson', Harry J. Tily?, Idan Blank',
Anastasia Vishnevetsky', Steven T. Piantadosi®, and Evelina Fedorenko*®
IMIT Department of Brain and Cognitive Sciences “Netflix, Inc.
3University of Rochester Department of Brain and Cognitive Sciences
4Massachusetts General Hospital Department of Psychiatry
?Harvard Medical School Department of Psychiatry

Futre” et al. 2018 {futrell, egibson, iblank, evelina%}@mit.edu,

hal.tily@gmail.com, staseyvifmail.med.upenn.edu

. Abstract
10256 Words X 179 SU bJ eCtS It is now a common practice to compare models of human language processing by comparing how well they predict behavioral and

neural measures of processing difficulty, such as reading times, on corpora of rich naturalistic linguistic materials. However, many of

1 these corpora, which are based on naturally-occurring text, do not contain many of the low-frequency syntactic constructions that are

If | yo u | We re | to | JO u rn ey | to | th e | N 0 rth often :equired :; (;istinguiqhs between [l)lr()c:;si:;ulrhlf:c:;'le: Here we Lr_iescr]'lrll;e a niw c':)rpusv:onsisltlingtilf éngl‘i.s: t;xls editeld to mmai[n
many low-frequency syntactic constructions while still sounding fluent to native speakers. The corpus is annotated with hand-corrected
| Of | E n g Ian d y | yo U | WO U Id | CO m e | tO | a | Penn Treebank-style parse trees and includes self-paced reading time data and aligned audio recordings. Here we give an overview of
. the content of the corpus and release the data.

valley | that | is | surrounded | by | moors |
as | high | as | mountains. | It | is | in | this |
valley | where | you | would | find | the | city
| of | Bradford, | where | once | a |

thousand | spinning | ...

Keywords: Cognitive modeling, reading time, psycholinguistics

Treat reading times as representation target



=PFL Behavioral scores

Futrell2018

wnipaw-z1d6
21d6
Zydb|sip

| A-ab1exx-1iage
Zn-obuejx-1aqe
L A-0bJejx-1iaqe
Zn-ebue-usqe

| A-0bJel-Jiaqe
gN-9seg-liaqe

L A-9sEq-18qle

€01 M-[X-0jsuel}
abJe|-epaqo.-wix
9seg-euago.-wix
80g-Ua-W|W-w|X

08ZL-00} -Wju-wwix
¥201L-GLIuX-WjuW-wix

7201 -1Jus-W[O-W|X

Y20 -1 us-Wjw-W|x
abJe-eyiaqol

aseg-e}iagol
aseqg-epadol[lisip
Bursew-p.iom-sjoym-pasesun-ab.e|-11aq
paseoun-abie|-1iaq
paseo-fenbuliynw-aseq-}aq
paseoun-aseq-1aq
paseoun-eseq-1eqiisip
sybnoy}-dins

qlw wis|

00) O < Q\ ()

Ao1pald pazi[euIoN

AIBERT GPT

T5

XLM

BERT

Emb.



GPT-3 GPT-J GPT-2 PCFG N-gram
Change (ms) Change (ms) Change (ms)

Change (ms)

Cloze

=PrL

Change (ms)

Change (ms)

reading times
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“results derived from GPT-2 [...] most reliably

characterize reading behavior overall”

GPT-2 continues to shine in predicting human

See also Smith & Levy 2013:
effect of word probability on
reading time is logarithmic
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https://www.pnas.org/doi/epdf/10.1073/pnas.2307876121
https://www.pnas.org/doi/epdf/10.1073/pnas.2307876121
https://www.sciencedirect.com/science/article/pii/S0010027713000413
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PFL
Neural scores correlate
with Behavioral scores
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Futrell2018 reading times
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=pr. What is the relative importance of evolutionary
and leaming-based optimization?
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Large feature size
without structure is
insufficient

» o oo

architecture + training
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Architecture substantially contributes to

models’ brain predictivity

Training generally
improves scores by ~“53%
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=PFL  LLMs align to the brain’s language system after
developmentally realistic amounts of training

developmentally realistic

/
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What's all this training for then?
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(WebText) Hosseini et al. 2022



=PFL  Take-home messages

Particular language models predict the human language system and behaviors

Model-to-brain alignment is explained by next-word-prediction performance

Model-to-behavior alignment correlates with brain, and task performance

The best models can be used to noninvasively control brain activity

Architecture and training both contribute to the brain-likeness of

model representations
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